Source code for mordred.tests.test_ETA

from rdkit import Chem
from numpy.testing import assert_almost_equal

from mordred import Calculator, ExtendedTopochemicalAtom

references = {
    # Roy et. al. Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment. p. 65
    'O=Cc1c(Cl)cccc1': {
        "ETA_alpha": 4.547,
        "AETA_alpha": 0.505,
        "ETA_shape_p": 0.230,
        "ETA_shape_y": 0.220,
        "ETA_shape_x": 0.000,
        "ETA_dAlpha_A": 0.005,
        "ETA_dAlpha_B": 0.000,
        "ETA_eta": 3.536,
        "ETA_eta_R": 9.998,
        "AETA_eta_F": 0.718,
        "ETA_eta_L": 1.543,
        "ETA_eta_RL": 4.343,
        "ETA_eta_FL": 2.800,
        "AETA_eta_BR": 0.018,
        "ETA_epsilon_1": 0.661,
        "ETA_epsilon_2": 0.861,
        "ETA_epsilon_3": 0.433,
        "ETA_epsilon_4": 0.553,
        "ETA_epsilon_5": 0.861,
        "ETA_dEpsilon_A": 0.228,
        "ETA_dEpsilon_B": 0.108,
        "ETA_dEpsilon_C": -0.119,
        "ETA_dEpsilon_D": 0.000,
        "AETA_beta_s": 0.556,
        "AETA_beta_ns": 0.889,
        "AETA_beta": 1.444,
        "AETA_dBeta": 0.333,
        "AETA_beta_ns_d": 0.056,
        "ETA_psi_1": 0.586,
        "ETA_dPsi_A": 0.128,
        "ETA_dPsi_B": 0.000,
    },
    'n1cc(O)ccc1': {
        "ETA_alpha": 3.233,
        "AETA_alpha": 0.462,
        "ETA_shape_p": 0.103,
        "ETA_shape_y": 0.155,
        "ETA_shape_x": 0.000,
        "ETA_dAlpha_A": 0.000,
        "ETA_dAlpha_B": 0.038,
        "ETA_eta": 2.048,
        "ETA_eta_R": 6.626,  # original:6.267. use sum of [eta_R]_i
        "AETA_eta_F": 0.654,
        "ETA_eta_L": 1.073,
        "ETA_eta_RL": 3.394,
        "ETA_eta_FL": 2.321,
        "AETA_eta_BR": 0.015,
        "ETA_epsilon_1": 0.631,
        "ETA_epsilon_2": 0.867,
        "ETA_epsilon_3": 0.433,
        "ETA_epsilon_4": 0.548,
        "ETA_epsilon_5": 0.796,
        "ETA_dEpsilon_A": 0.197,
        "ETA_dEpsilon_B": 0.083,
        "ETA_dEpsilon_C": -0.115,
        "ETA_dEpsilon_D": 0.071,
        "AETA_beta_s": 0.607,
        "AETA_beta_ns": 0.929,
        "AETA_beta": 1.536,
        "AETA_dBeta": 0.321,
        "AETA_beta_ns_d": 0.071,
        "ETA_psi_1": 0.533,
        "ETA_dPsi_A": 0.181,
        "ETA_dPsi_B": 0.000,
    },
# Roy, et. al. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. p.145
    'O=Cc1ccccc1': {
        "AETA_alpha": 0.479,
        "ETA_shape_p": 0.087,
        "ETA_shape_y": 0.130,
        "ETA_shape_x": 0.000,
        "ETA_dAlpha_A": 0.000,
        "ETA_dAlpha_B": 0.021,
        "ETA_eta": 2.576,
        "ETA_eta_R": 8.023,
        "AETA_eta_F": 0.681,
        "ETA_eta_L": 1.303,
        "AETA_eta_BR": 0.009,
        "ETA_epsilon_1": 0.583,
        "ETA_epsilon_2": 0.796,
        "ETA_epsilon_3": 0.433,
        "ETA_epsilon_4": 0.498,
        "ETA_epsilon_5": 0.796,
        "ETA_dEpsilon_A": 0.150,
        "ETA_dEpsilon_B": 0.085,
        "ETA_dEpsilon_C": -0.065,
        "ETA_dEpsilon_D": 0.000,
        "AETA_beta_s": 0.531,
        "AETA_beta_ns": 0.938,
        "AETA_beta": 1.469,
        "AETA_dBeta": 0.406,
        "AETA_beta_ns_d": 0.000,
        "ETA_psi_1": 0.602,
        "ETA_dPsi_A": 0.112,
        "ETA_dPsi_B": 0.000,
    },
}

[docs]def test_ETA(): calc = Calculator(ExtendedTopochemicalAtom) for smi, desireds in references.items(): mol = Chem.MolFromSmiles(smi) actuals = {str(d): v for d, v in zip(calc.descriptors, calc(mol))} for name, desired in desireds.items(): yield assert_almost_equal, actuals[name], desired, 2, '{} of {}'.format(name, smi)