import numpy as np
import networkx
from . import _matrix_attributes as ma
from ._base import Descriptor
__all__ = ("DetourMatrix", "DetourIndex",)
class LongestSimplePath(object):
__slots__ = (
"G", "N", "neighbors",
"start", "result", "visited", "distance",
)
def __init__(self, G, weight=None):
self.G = G
self.N = G.number_of_nodes()
self.neighbors = {
n: [(v, d.get(weight, 1.0)) for v, d in G[n].items()]
for n in G.nodes_iter()
}
def _start(self, s):
self.start = s
self.result = {n: 0 for n in self.G.nodes_iter()}
self.visited = set()
self.distance = 0.0
self._search(s)
return self.result
def _search(self, u):
self.visited.add(u)
for v, w in self.neighbors[u]:
if v in self.visited:
continue
self.visited.add(v)
self.distance += w
d = self.distance
if d > self.result[v]:
self.result[v] = d
if v != self.start:
self._search(v)
self.visited.remove(v)
self.distance -= w
def __call__(self):
return {(min(s, g), max(s, g)): w
for s in self.G.nodes_iter()
for g, w in self._start(s).items()}
class CalcDetour(object):
__slots__ = ("N", "Q", "nodes", "C")
def __init__(self, G, weight="weight"):
self.N = G.number_of_nodes()
self.Q = []
for bcc in networkx.biconnected_component_subgraphs(G, False):
lsp = LongestSimplePath(bcc, weight)()
nodes = set()
for a, b in lsp:
nodes.add(a)
nodes.add(b)
self.Q.append((nodes, lsp))
def merge(self):
for i in range(1, len(self.Q) + 1):
ns, lsp = self.Q[-i]
common = ns & self.nodes
if len(common) == 0:
continue
elif len(common) > 1:
raise ValueError("bug: multiple common nodes.")
common = common.pop()
self.Q.pop(-i)
for n in ns:
self.nodes.add(n)
break
def calc_weight(i, j):
ij = (i, j)
if ij in self.C:
return self.C[ij]
elif ij in lsp:
return lsp[ij]
elif i == j == common:
return max(lsp[ij], self.C[ij])
ic = (min(i, common), max(i, common))
jc = (min(j, common), max(j, common))
if ic in self.C and jc in lsp:
return self.C[ic] + lsp[jc]
elif jc in self.C and ic in lsp:
return self.C[jc] + lsp[ic]
else:
raise ValueError("bug: unknown weight")
self.C = {(i, j): calc_weight(i, j)
for i in self.nodes
for j in self.nodes
if i <= j}
def __call__(self):
if self.N == 1:
return np.array([[0]])
self.nodes, self.C = self.Q.pop()
while self.Q:
self.merge()
result = np.empty((self.N, self.N))
for i, j in ((i, j) for i in range(self.N) for j in range(i, self.N)):
result[i, j] = self.C[(i, j)]
result[j, i] = self.C[(i, j)]
return result
class DetourMatrixBase(Descriptor):
__slots__ = ()
explicit_hydrogens = False
require_connected = True
class DetourMatrixCache(DetourMatrixBase):
__slots__ = ()
def parameters(self):
return ()
def calculate(self):
G = networkx.Graph()
G.add_nodes_from(a.GetIdx() for a in self.mol.GetAtoms())
G.add_edges_from(
(b.GetBeginAtomIdx(), b.GetEndAtomIdx())
for b in self.mol.GetBonds()
)
return CalcDetour(G)()
[docs]class DetourMatrix(DetourMatrixBase):
r"""detour matrix descriptor.
:type type: str
:param type: :ref:`matrix_aggregating_methods`
"""
__slots__ = ("_type",)
[docs] def description(self):
return "{} from detourn matrix".format(self._type.description())
@classmethod
def preset(cls):
return map(cls, ma.methods)
def __str__(self):
return "{}_Dt".format(self._type.__name__)
def parameters(self):
return self._type,
def __init__(self, type="SpMax"):
self._type = ma.get_method(type)
def dependencies(self):
return {
"result": self._type(
DetourMatrixCache(),
self.explicit_hydrogens,
self.kekulize,
),
}
def calculate(self, result):
return result
rtype = float
[docs]class DetourIndex(DetourMatrixBase):
r"""detour index descriptor.
.. math::
I_{\rm D} = \frac{1}{A} \sum^A_{i=1} \sum^A_{j=1} {\boldsymbol D}_{ij}
where
:math:`D` is detour matrix,
:math:`A` is number of atoms.
"""
__slots__ = ()
[docs] def description(self):
return "detour index"
def parameters(self):
return ()
@classmethod
def preset(cls):
yield cls()
explicit_hydrogens = False
def __str__(self):
return self.__class__.__name__
def dependencies(self):
return {"D": DetourMatrixCache()}
def calculate(self, D):
return int(0.5 * D.sum())
rtype = int