from itertools import chain, groupby
import numpy as np
from ._base import Descriptor
from ._graph_matrix import DistanceMatrix
__all__ = (
"InformationContent",
"TotalIC", "StructuralIC", "BondingIC", "ComplementaryIC",
"ModifiedIC", "ZModifiedIC",
)
class BFSTree(object):
__slots__ = ("tree", "visited", "bonds", "atoms")
def __init__(self, mol):
self.tree = {}
self.visited = set()
self.bonds = {}
for b in mol.GetBonds():
s = b.GetBeginAtomIdx()
d = b.GetEndAtomIdx()
t = b.GetBondType()
self.bonds[s, d] = t
self.bonds[d, s] = t
self.atoms = [(a.GetAtomicNum(), a.GetDegree(), a.GetNeighbors()) for a in mol.GetAtoms()]
def reset(self, i):
self.tree.clear()
self.visited.clear()
self.tree[i] = ()
self.visited.add(i)
def expand(self):
self._expand(self.tree)
def _expand(self, tree):
for src, dst in list(tree.items()):
self.visited.add(src)
if dst is ():
tree[src] = {
n.GetIdx(): ()
for n in self.atoms[src][2]
if n.GetIdx() not in self.visited
}
else:
self._expand(dst)
def _code(self, tree, before, trail):
if len(tree) == 0:
yield trail
else:
for src, dst in tree.items():
code = []
if before is not None:
bt = self.bonds[before, src]
code.append(bt)
code.append(self.atoms[src][:2])
nxt = tuple(chain(trail, code))
for t in self._code(dst, src, nxt):
yield t
def get_code(self, i, order):
self.reset(i)
for _ in range(order):
self.expand()
return tuple(sorted(self._code(self.tree, None, ())))
class InformationContentBase(Descriptor):
__slots__ = ("_order",)
kekulize = True
def __str__(self):
return self._name + str(self._order)
@classmethod
def preset(cls, version):
return (cls(o) for o in range(6))
def parameters(self):
return (self._order,)
def __init__(self, order=0):
self._order = order
rtype = float
class Ag(InformationContentBase):
__slots__ = ("_order",)
@classmethod
def preset(cls, version):
return ()
_name = "Ag"
def dependencies(self):
return {"D": DistanceMatrix(self.explicit_hydrogens)}
def calculate(self, D):
if self._order == 0:
atoms = [a.GetAtomicNum() for a in self.mol.GetAtoms()]
else:
tree = BFSTree(self.mol)
atoms = [
tree.get_code(i, self._order)
for i in range(self.mol.GetNumAtoms())
]
ad = {a: i for i, a in enumerate(atoms)}
Ags = [(k, sum(1 for _ in g)) for k, g in groupby(sorted(atoms))]
Nags = len(Ags)
return (
np.fromiter((ad[k] for k, _ in Ags), "int", Nags),
np.fromiter((ag for _, ag in Ags), "float", Nags),
)
rtype = None
def _shannon_entropy_term(a):
return a * np.log2(a)
shannon_entropy_term = np.vectorize(_shannon_entropy_term)
def shannon_entropy(a, w=1):
N = np.sum(a)
return -np.sum(w * shannon_entropy_term(a / N))
[docs]class InformationContent(InformationContentBase):
r"""neighborhood information content descriptor.
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered neighborhood information content".format(self._order)
_name = "IC"
def dependencies(self):
return {"iAgs": Ag(self._order)}
def calculate(self, iAgs):
_, Ags = iAgs
return shannon_entropy(Ags)
[docs]class TotalIC(InformationContentBase):
r"""neighborhood total information content descriptor.
.. math::
{\rm TIC}_m = A \cdot {\rm IC}_m
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered neighborhood total information content".format(self._order)
_name = "TIC"
def dependencies(self):
return {"ICm": InformationContent(self._order)}
def calculate(self, ICm):
A = self.mol.GetNumAtoms()
return A * ICm
[docs]class StructuralIC(TotalIC):
r"""structural information content descriptor.
.. math::
{\rm SIC}_m = \frac{{\rm IC}_m}{\log_2 A}
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered structural information content".format(self._order)
_name = "SIC"
def calculate(self, ICm):
d = np.log2(self.mol.GetNumAtoms())
with self.rethrow_zerodiv():
return ICm / d
[docs]class BondingIC(TotalIC):
r"""bonding information content descriptor.
.. math::
{\rm BIC}_m = \frac{{\rm IC}_m}{\log_2 \sum^B_{b=1} \pi^{*}_b}
:type order: int
:param order: order(number of edge) of subgraph
:returns: NaN when :math:`\sum^B_{b=1} \pi^{*}_b <= 0`
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered bonding information content".format(self._order)
_name = "BIC"
def calculate(self, ICm):
B = sum(b.GetBondTypeAsDouble() for b in self.mol.GetBonds())
with self.rethrow_zerodiv():
log2B = np.log2(B)
return ICm / log2B
[docs]class ComplementaryIC(TotalIC):
r"""complementary information content descriptor.
.. math::
{\rm CIC}_m = \log_2 A - {\rm IC}_m
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered complementary information content".format(self._order)
_name = "CIC"
def calculate(self, ICm):
A = self.mol.GetNumAtoms()
return np.log2(A) - ICm
[docs]class ModifiedIC(InformationContent):
r"""modified information content index descriptor.
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered modified information content".format(self._order)
_name = "MIC"
def calculate(self, iAgs):
ids, Ags = iAgs
w = np.vectorize(lambda i: self.mol.GetAtomWithIdx(int(i)).GetMass())(ids)
return shannon_entropy(Ags, w)
[docs]class ZModifiedIC(InformationContent):
r"""Z-modified information content index descriptor.
:type order: int
:param order: order(number of edge) of subgraph
"""
since = "1.0.0"
__slots__ = ()
[docs] def description(self):
return "{}-ordered Z-modified information content".format(self._order)
_name = "ZMIC"
def calculate(self, iAgs):
ids, Ags = iAgs
w = Ags * np.vectorize(lambda i: self.mol.GetAtomWithIdx(int(i)).GetAtomicNum())(ids)
return shannon_entropy(Ags, w)